
61

INTRODUCTION 

Cyclic loading is a type of loading that often 
results in the propagation of cracks in structures 
caused by the repeated loads. Many buildings are 
classified to a high or super high cycle loading 
fatigue classes in which fatigue causes structural 
damages [1]. It influences on their performance 
and the lifespan of buildings, as well as, their 
safety of the use. Therefore, the previous numeri-
cal simulations in order to predict the elastic-plas-
tic material response under cyclic loading beyond 
the plastic limit is essential to design structures 
and their usage. Cyclic loading should be also tak-
en into consideration not only in the construction 

sector but also in metal forming processes. For 
example, severe plastic deformations (SPD) are 
characterized by the large plastic deformation and 
the omission of the cyclic loading during their 
analysis can lead to the wrong results. 

However, the numerical simulations of cy-
clic loading tests require the proper selection of 
material model which gives a multipurpose de-
scription of the material response. Over years, 
different models have been used in order to pre-
dict the cyclic response of materials, for exam-
ple: bilinear [2], multilinear [3], Frederick-Arm-
strong (F-A) [4], Chaboche [5], Ohno-Wang [6], 
Abdel-Karim Ohno [7], Norton-Bailey [8] and 
Prager [9] models. The Chaboche model is often 
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used in order to model the plasticity of different 
materials. It was firstly proposed by Chaboche 
as the development of the Frederick-Armstrong 
model by the addition of the superposition of 
some backstresses with different properties. 
The Chaboche kinematic hardening model is 
sometimes modified by the addition of the com-
ponent associated with the isotropic hardening 
(Chaboche combined isotropic-kinematic hard-
ening model – CIKH). Due to the superposition 
of some backstresses, the Chaboche model is 
also applied for considering the cyclic loading 
phenomena, e.g. ratcheting, stress relaxation or 
elastic and plastic shakedown [10-12]. The ex-
amples of the application of the Chaboche and 
CIKH models are contained in [13-16].

The use of both original and modified Chab-
oche models for modelling the behaviour of the 
material under cyclic loading has many advan-
tages. For example, the CIKH model including 
both isotropic and kinematic hardening requires 
only four (for two backstresses) or six (for three 
backstresses) parameters associated with the ki-
nematic hardening, two isotropic and some elas-
tic parameters for most engineering applications. 
Additionally, the hardening parameters might be 
determined in uniaxial cyclic tension/compres-
sion tests. Therefore, the number of experimental 
research might be reduced to the minimum.

Although the number of parameters is rela-
tively small in the Chaboche model and its modi-
fications, the identification of backstresses is a 
difficult challenge which often requires solving 
the optimization problem in order to fit experi-
mental and numerical hysteresis curves. Another 
limitation is that backstress components –  and  
are not directly related to the physical quantifies, 
thus their identification is performed for specific 
purposes. The correct set of hardening parameters 
should predict the material behaviour under cy-
clic loadings in the best way. The CIKH model 
does not also include the non-proportional hard-
ening and the strain memory [17].

Recently, the proper determination of a set 
of parameters for the Chaboche model or one of 
its modified ones has been taken under consid-
eration. Different approaches dedicated to identi-
fication of hardening parameters are available in 
the literature. Liu at al. [18] used strain-controlled 
cycling loading tests at different strain amplitudes 
and ratcheting ones in order to verify the set of 
hardening parameters for Chaboche model. In 
[19], the strain-controlled tests are applied to 

determine kinematic and hardening parameters. 
In the previous works of authors [20, 21], the 
strain-controlled % cyclic loading tests were 
made in order to identity hardening parameters 
for the F-A and Chaboche-Lemaitre model for an 
aluminum alloy. The uniaxial and biaxial ratchet-
ing tests are used for the verification of Chaboche 
hardening parameters in [22-26]. 

It is worth highlighting that hardening param-
eters might be determined only with a certain pre-
cision associated with both error in the prediction 
of experiment, as well as, errors in the identifica-
tion process. In order to minimize the differences 
between experimental and numerical results, as 
well as, to improve the results of the identifica-
tion process, the optimization problem is consid-
ered. The different optimization procedures in the 
identification of the Chaboche hardening param-
eters are presented in [27-35]. The hardening pa-
rameters procedures using advanced approaches 
based on genetic algorithms are also tested [36-
38]. In the previous works, the authorial identi-
fication procedure using the fuzzy logic theory is 
described [39]. The approach includes the scat-
tering of the input and output data, as well as, the 
influence of elastic-plastic differential equations, 
which are the mapping model, on the identifica-
tion procedure. In contrast, it is not included in 
the classical optimization method.

The aim of this research is the identifica-
tion of the set of hardening parameters using the 
Chaboche-Lemaitre isotropic-kinematic harden-
ing model (CIKH) for the S235JR construction 
and machine steel, which is commonly applied 
in many engineering applications, also in a con-
struction sector. Such identification is very im-
portant for the right prediction of the material 
behaviour in different, even catastrophic situ-
ations caused by the cyclic loading. Different 
identification procedures of hardening param-
eters (the last stabilized cycle method, the pro-
cedure proposed by Santus et al. [40]) based on 
the experimental strain-controlled cyclic loading 
tests are tested here. The procedures are focused 
on the stabilized cycles of hysteresis loops. The 
optimization procedure using both least-square 
method and the authorial fuzzy logic approach 
are then applied for the improvement of the 
agreement between the numerical and experi-
mental data. The achievement of a good con-
vergence between numerical and experimental 
results confirms the correctness of the selection 
of the hardening parameters.
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CONSTITUTIVE EQUATIONS OF THE 
CIKH MODEL  

The main constitutive equations associated 
with the classical plasticity and the Chaboche-Le-
maitre isotropic-kinematic hardening model 
(CIKH) for a three dimensional (3-D) problem is 
described below.  

− The strain tensor consists of the elastic and 
plastic components (Eq. 1): 

𝜀𝜀 = 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑝𝑝   (1) 

where: 𝜀𝜀𝑒𝑒, 𝜀𝜀𝑝𝑝 and 𝜀𝜀 mean elastic, plastic and 
overall strain, respectively. 

− In the incremental form used in calculations 
in order to identity the hardening parameters, 
the Eq. 1 might be rewritten (Eq. 2): 

𝑑𝑑𝜀𝜀 = 𝑑𝑑𝜀𝜀𝑒𝑒 + 𝑑𝑑𝜀𝜀𝑝𝑝      (2) 

where: 𝑑𝑑𝜀𝜀, 𝑑𝑑𝜀𝜀𝑒𝑒 and 𝑑𝑑𝜀𝜀𝑝𝑝 describe the increment of 
overall, elastic and plastic strain, accordingly. 

− The incremental Hook’s law is written as fol-
lows (Eq. 3): 

𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑑𝑑𝜀𝜀𝑒𝑒   (3) 

where: 𝑑𝑑𝑑𝑑 is the stress increment, 𝐶𝐶 is the elastic, 
constitutive stiffness matrix. 

− The evolution of the yield surface using the 
von Mises yield criterion assuming isotropic 
and kinematic hardening is described in line 
with Eq. 4: 

𝑓𝑓(𝑑𝑑, 𝜒𝜒, 𝑝𝑝) = √3
2 (𝑑𝑑𝐷𝐷 − 𝜒𝜒) ∙ (𝑑𝑑𝐷𝐷 − 𝜒𝜒) − 𝑑𝑑𝑦𝑦 − 𝑟𝑟(𝑝𝑝)  

  (4) 

where: 𝑑𝑑𝐷𝐷 is the deviatoric part of the stress ten-
sor, 𝜒𝜒 is a backstress tensor associated with the 
translation of the center of the yield surface, 𝑟𝑟(𝑝𝑝) 
is the isotropic hardening function related to the 
increase of the yield surface, 𝑑𝑑𝑦𝑦 is the yield stress 
and 𝑑𝑑𝑝𝑝 is the effective plastic strain.  

For the plastic flow, the value of the 
𝑓𝑓(𝑑𝑑, 𝜒𝜒, 𝑝𝑝) formula is above or equals zero. 

− The effective plastic strain 𝑑𝑑𝑝𝑝, which is re-
lated to the isotropic hardening for a 3-D case 
is as follows (Eq. 5): 

𝑑𝑑𝑝𝑝 = √2
3 𝑑𝑑𝜀𝜀𝑝𝑝 ∙ 𝑑𝑑𝜀𝜀𝑝𝑝      (5) 

− In line with the normality condition, the plas-
tic strain increment might be written as fol-
lows (Eq. 6): 

𝑑𝑑𝜀𝜀𝑝𝑝 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑   (6) 

where: 𝑑𝑑𝑑𝑑 is the plastic multiplier and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 defines 

the normal to the yield surface (𝑛𝑛). The formula 
above might be rewritten, therefore (Eq. 7). 

𝑑𝑑𝜀𝜀𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑛𝑛   (7) 

− The consistency condition might be written as 
follows (Eq. 8): 

𝑑𝑑𝑓𝑓(𝑑𝑑, 𝑥𝑥, 𝑝𝑝) =  𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 ∙ 𝑑𝑑𝑑𝑑 + 𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕 ∙ 𝑑𝑑𝜒𝜒 + 𝜕𝜕𝑑𝑑
𝜕𝜕𝑝𝑝 𝑑𝑑𝑝𝑝 = 0 (8) 

Eq. 8 assumes both isotropic and kinematic 
hardening of a material. 
− According to the Chaboche model, the back-

stress is a sum of 𝑖𝑖 additive partial backstress 
components (Eq. 9) and the evolution of each 
of them might be written according to the 
equation based on the F-A hardening rule 
(Eq. 10) [41]: 

𝜒𝜒 = ∑ 𝜒𝜒𝑖𝑖
𝑛𝑛
𝑖𝑖=1    (9) 

𝑑𝑑𝜒𝜒𝑖𝑖 = 2
3 𝐶𝐶𝑖𝑖𝑑𝑑𝜀𝜀𝑝𝑝 ± 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖|𝑑𝑑𝜀𝜀𝑝𝑝|  (10) 

where: 𝐶𝐶𝑖𝑖 and 𝛾𝛾𝑖𝑖 are linear and rate coefficients 
which have a positive value. Depending on the 
sign of 𝑑𝑑𝜀𝜀𝑝𝑝 (increasing or decreasing load), Eq. 
10 can be divided into two first-order linear, dif-
ferential forms (Eq. 11-12) [40]: 

𝑑𝑑𝜕𝜕𝑖𝑖
𝑑𝑑𝜀𝜀𝑝𝑝 = 2

3 𝐶𝐶𝑖𝑖 − 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖 for 𝑑𝑑𝜀𝜀𝑝𝑝 > 0      (11) 

𝑑𝑑𝜕𝜕𝑖𝑖
𝑑𝑑𝜀𝜀𝑝𝑝 = 2

3 𝐶𝐶𝑖𝑖 + 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖 for 𝑑𝑑𝜀𝜀𝑝𝑝 < 0      (12) 

Equations 10-11 can be solved as a Cauchy in-
itial value problem. The evolution of 𝜒𝜒𝑖𝑖 is simu-
lated with respect to 𝜀𝜀𝑝𝑝, using its known initial 
value. The behaviour of 𝜒𝜒𝑖𝑖 is determined using Eq. 
10 or 11, depending on the sign of 𝑑𝑑𝜀𝜀𝑝𝑝. During the 
cyclic loading tests, the hysteresis loops are gener-
ated and the material indicates the hardening effect 
and then the stabilization. It is noted that 𝜒𝜒𝑖𝑖 back-
stress components are contained between two as-
ymptotes which describe the equilibrium points 
𝜒𝜒𝑖𝑖

𝑚𝑚𝑖𝑖𝑛𝑛 and 𝜒𝜒𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 (Eq. 13-14) [40-42], depending on 

that the material is loaded or unloaded. The equi-
librium points are never reached (Fig. 1). 

lim
𝜀𝜀𝑝𝑝→∞

𝜒𝜒𝑖𝑖 = 𝜒𝜒𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑖𝑖

𝛾𝛾𝑖𝑖
 if 𝜀𝜀𝑝𝑝 >> 𝜀𝜀0

𝑝𝑝      (13) 

lim
𝜀𝜀𝑝𝑝→∞

𝜒𝜒𝑖𝑖 = 𝜒𝜒𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 = − 𝐶𝐶𝑖𝑖

𝛾𝛾𝑖𝑖
 if 𝜀𝜀𝑝𝑝 << 𝜀𝜀0

𝑝𝑝     (14) 

where: 𝜀𝜀0
𝑝𝑝 is initial value of plastic strain. 

The size of a yield surface depends on the iso-
tropic hardening. If the isotropic hardening is not  
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Figure 1. Asymptotes defining the equilibrium 
points for the backstress 
 

observed, the yield stress is constant [41]. Other-
wise, the yield surface expands uniformly. In this 
paper this assumed that it evolves in line with the 
Voce exponential formula (Eq. 15): 

𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑦𝑦,0 + 𝑄𝑄(1 − 𝑒𝑒−𝑏𝑏𝑏𝑏)  (15) 

where: 𝜎𝜎𝑦𝑦,0 is the initial yield stress, 𝑄𝑄 is a multi-
plicative Voce’s equation parameter, 𝑏𝑏 is an ex-
ponential Voce’s equation one, 𝑄𝑄 – parameter de-
termines the saturation of the isotropic hardening 
and its variation might be positive for cyclic hard-
ening or negative for cyclic softening [43], 𝑏𝑏 – 
parameter describes the saturation rate [44].  
It is assumed that (Eq. 16-17): 

𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑦𝑦,0 + 𝑄𝑄 if 𝑝𝑝 → ∞  (16) 

𝜎𝜎𝑦𝑦,0 − 𝜎𝜎𝑦𝑦(𝑝𝑝 → ∞) = −𝑄𝑄𝑒𝑒−𝑏𝑏𝑏𝑏      (17) 

When the load is monotonic, isotropic and 
kinematic hardening behaves similarly. Under the 
cyclic loading, isotropic hardening cannot simu-
late the Bauschinger effect associated with the 
translation of a yield surface [45]. When the ma-
terial is expected to be under cyclic loading, then 
kinematic hardening should be also used in nu-
merical simulations. Using the equations pre-
sented above, the Chaboche-Lemaitre isotropic-
kinematic hardening (CIKH) model can be used 
both to solved direct or inverse problems. The 
material and experimental parameters are input 
data and the stress-strain history is an output in 
solving of a direct problem. In the inverse prob-
lem, the experimental data is an input and harden-
ing parameters are used as an output.  

 
Procedure for identification of hardening 
parameters 

The CIKH parameters are determined for the 
right prediction of the material behaviour in dif- 

ferent engineering problems, with respect to the 
experimental results. The identification proce-
dure used in this paper is considered as the inverse 
problem and is described in this section.  

Before the determination of hardening param-
eters for the CIKH model, the maximum number 
of “i” backstresses should be selected. There are 
some tips how the best number of backstresses is 
chosen. It is assumed that the number of 𝜒𝜒𝑖𝑖 back-
stresses in the model should be the minimum but 
it should be sufficient to map the experiment as 
accurately as possible. In [46], three backstress 
components should be used for right modelling of 
cyclic loading tests (Fig. 2). The first 𝜒𝜒1 compo-
nent should be highly nonlinear and it starts hard-
ening with a large modulus indicating the quick 
stabilization. The second backstress 𝜒𝜒2 should 
model the transient non-linear part of a stable hys-
teresis loop. It should be also non-linear. The 
third 𝜒𝜒3 backstress component might be linear 
(𝛾𝛾3 = 0) or almost linear (𝛾𝛾3 → 0). It describes 
the linear part of a hysteresis curve at high strains. 
Generally, it is assumed that 𝛾𝛾1 > 𝛾𝛾2 > 𝛾𝛾3. The 
selection of number linear and non-linear back-
stress components is arbitrary. Chaboche in [47] 
recommended the application of two non-linear 
and one linear components in order to control the 
tangent modulus at high strains. In [48], the small 
nonlinearity of the third backstress (0 < 𝛾𝛾3 < 9) 
is recommended to model the tangent modulus. It 
is also shown that the number of backstresses 
above three is not necessary and the application of 
their higher number does not improve the fitting of 
experimental and numerical results [49-51].  

 

 
Figure 2. Interpretation of three backstresses 
components  
 

The CIKH model with three backstress com-
ponents and isotropic hardening described by the 
exponential Voce formula is applied in this paper. 
The set of eight parameters – two associated with 
the isotropic hardening (𝑄𝑄 and 𝑏𝑏) and six related 
to the kinematic one (𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3); are 
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identified to simulate the material behaviour un-
der cyclic loading.  

Firstly, kinematic hardening parameters for 
the CIKH model were selected. The stabilized 
hysteresis loop stress-strain data was applied 
here. It is a procedure using the data for the last 
stabilized cycle of the hysteresis curve in which 
the saturation of the isotropic hardening is ob-
served. The method is applied mainly for long-
term cycle analyses with several hysteresis loops. 
The steps for this procedure are as follows: 
1) The last stabilized loop is extracted from the 

stress-strain hysteresis curve obtained in cy-
clic loading tests under strain-controlled con-
ditions. 

2) The data pair (𝜎𝜎𝑖𝑖, 𝜀𝜀𝑖𝑖
𝑝𝑝𝑝𝑝) for the loop are deter-

mined with the strain axis shifted to 𝜀𝜀0
𝑝𝑝𝑝𝑝 (Eq. 

18) (Fig. 3): 
𝜀𝜀𝑝𝑝

𝑖𝑖 = 𝜀𝜀𝑖𝑖 − 𝜎𝜎𝑖𝑖
𝐸𝐸 − 𝜀𝜀𝑝𝑝

0      (18) 
where: 𝜀𝜀𝑝𝑝

0 means the transfer of the yield sur-
face. For the first point of the loop, 𝜀𝜀𝑝𝑝

1 = 0, 
therefore. 
 

 
Figure 3. The exemplary last stabilized cycle 
used in a procedure for parameter identification 
 

3) For each data pair (𝜎𝜎𝑖𝑖, 𝜀𝜀𝑖𝑖
𝑝𝑝𝑝𝑝), the values of 𝜒𝜒𝑖𝑖 

are determined using the experimental data 
(Eq. 19): 

𝜒𝜒𝑖𝑖 = 𝜎𝜎𝑖𝑖 − 𝜎𝜎𝑠𝑠   (19) 

where: 𝜎𝜎𝑠𝑠 determines the size of the yield surface 
after the stabilization (Eq. 20): 

𝜎𝜎𝑠𝑠 = 𝜎𝜎1+𝜎𝜎𝑛𝑛
2    (20) 

4) Based on the backstress evolution law in the 
integrated form and assuming that 𝜀𝜀𝑝𝑝

1 = 0 

for the first data pair, it can be written that 
(Eq. 21): 

𝜒𝜒𝑖𝑖 = 𝐶𝐶𝑖𝑖
𝛾𝛾𝑖𝑖

(1 − 𝑒𝑒−𝛾𝛾𝑖𝑖𝜀𝜀𝑝𝑝)        (21) 

The equation above is then used for the deter-
mination of 𝐶𝐶𝑖𝑖 and 𝛾𝛾𝑖𝑖 parameters for the CIKH 
model. The isotropic hardening parameters were 
then identified on the basis of the first and the last 
stabilized hysteresis loops extracted from the ex-
perimental stress-strain curve. The 𝑄𝑄 isotropic pa-
rameter is determined as follows (Eq. 22): 

𝑄𝑄 = 𝜎𝜎𝑦𝑦 (𝑝𝑝→∞) − 𝜎𝜎0     (22) 

The second isotropic parameter 𝑏𝑏 describing 
the rate of the yield stress increasing, is calculated 
as follows (Eq. 23): 

𝑏𝑏 = −
𝑝𝑝𝑙𝑙

𝜎𝜎𝑦𝑦 (𝑝𝑝→∞)−𝜎𝜎0
𝑄𝑄

𝑝𝑝      (23) 

It is assumed that the value of 𝑏𝑏 parameter de-
pends on the material saturation rate. The high 
values of 𝑏𝑏 parameter are obtained for the fast sta-
bilization of the material [52]. On the basis of the 
steps presented above, the algorithm is written in 
a commercial program and is used here. 

The second approach for the identification of 
kinematic hardening parameters is the procedure 
proposed by Santus et al. [40]. The stabilized cy-
cles of two cyclic stress-strain curves obtained in 
symmetrical and non-symmetrical cyclic loading 
tests are used here – for 𝜀𝜀 = −0.5 ÷ 1% and 𝜀𝜀 =
±1%. The following parameters are identified: 
𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝛾𝛾1, 𝛾𝛾2, the initial third backstress com-
ponent 𝜒𝜒3,0 and the yield stress 𝜎𝜎𝑦𝑦. It is assumed 
the 𝛾𝛾3 component is linear (𝛾𝛾3 = 0). Because the 
𝜒𝜒1,0 and 𝜒𝜒2,0 parameters do not affect the stabi-
lized behaviour, they do not calculated here. More 
information about the procedure is contained in 
[40]. The algorithm used in this paper is simpli-
fied as follows: 
1) For each stabilized cycle used in the research, 

the plastic strain range ∆𝜀𝜀𝑝𝑝, mean plastic 
strain 𝜀𝜀𝑝𝑝,𝑚𝑚, stress range of the stabilized cy-
cle ∆𝜎𝜎, mean stress of the stabilized cycle 
𝜎𝜎𝑚𝑚, the range of the stress for the stabilized 
cycle 𝐴𝐴 and 𝑑𝑑𝜎𝜎

𝑑𝑑𝜀𝜀𝑝𝑝 are determined at the extreme 
point using experimental data. 

2) The 𝑐𝑐3 and 𝜒𝜒3,0 are calculated using Eq. 24 
and 25. 

𝐶𝐶3 = 𝜎𝜎𝑚𝑚,𝐼𝐼𝐼𝐼 −𝜎𝜎𝑚𝑚,𝐼𝐼 

𝜀𝜀𝐼𝐼𝐼𝐼
𝑝𝑝,𝑚𝑚−𝜀𝜀𝐼𝐼

𝑝𝑝,𝑚𝑚   (24) 
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𝜒𝜒3,0 = 𝜀𝜀𝐼𝐼𝐼𝐼
𝑝𝑝,𝑚𝑚𝜎𝜎𝑚𝑚,𝐼𝐼 −𝜀𝜀𝐼𝐼

𝑝𝑝,𝑚𝑚𝜎𝜎𝑚𝑚,𝐼𝐼𝐼𝐼 

𝜀𝜀𝐼𝐼𝐼𝐼
𝑝𝑝,𝑚𝑚−𝜀𝜀𝐼𝐼

𝑝𝑝,𝑚𝑚       (25) 

where: 𝐼𝐼 and 𝐼𝐼𝐼𝐼 means the first and the second 
hysteresis curve, 𝜒𝜒3,0 is the initial value of the 
third backstress component. 

3) The 𝛾𝛾1 trial values are assumed from the 
range of 100 to 2000. 

4) The error function 𝛹𝛹(𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝛾𝛾1, 𝛾𝛾2, 𝜒𝜒3,0, 
𝜎𝜎𝑦𝑦) which measures the fitting of a set of pa-
rameters, is computed.  

5) For each trial value 𝛾𝛾1: 
• 𝑎𝑎𝐼𝐼, 𝑎𝑎𝐼𝐼𝐼𝐼, 𝑏𝑏𝐼𝐼 and 𝑏𝑏𝐼𝐼𝐼𝐼 values are computed 

using Eq. 26-29. 

𝑎𝑎𝐼𝐼 = 1 − 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (𝛾𝛾1∆𝜀𝜀𝐼𝐼
𝑝𝑝

2 )          (26) 

𝑎𝑎𝐼𝐼𝐼𝐼 = 1 − 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (𝛾𝛾1∆𝜀𝜀𝐼𝐼𝐼𝐼
𝑝𝑝

2 )         (27) 

𝑏𝑏𝐼𝐼 = −𝐶𝐶3 + 𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀𝑝𝑝|

𝜎𝜎=𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼
𝑚𝑚𝑠𝑠𝑚𝑚         (28) 

𝑏𝑏𝐼𝐼𝐼𝐼 = −𝐶𝐶3 + 𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀𝑝𝑝|

𝜎𝜎=𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼𝐼𝐼
𝑚𝑚𝑠𝑠𝑚𝑚       (29) 

where: 𝑎𝑎𝐼𝐼, 𝑎𝑎𝐼𝐼𝐼𝐼, 𝑏𝑏𝐼𝐼 and 𝑏𝑏𝐼𝐼𝐼𝐼 are called dummy values 
for the determination of 𝐶𝐶1 and 𝐶𝐶2 parameters, 
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼

𝑚𝑚𝑠𝑠𝑚𝑚  and 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼𝐼𝐼
𝑚𝑚𝑠𝑠𝑚𝑚  are maximum stress values 

read from a stabilized cycle for the first and the 
second hysteresis curves, respectively, 𝑡𝑡𝑎𝑎𝑡𝑡ℎ is a 
hyperbolic tangent function. 

• The 𝐶𝐶1 and 𝐶𝐶2 values are computed with 
the use of Eq. 30-31. 

𝐶𝐶1 = 𝑠𝑠𝐼𝐼𝐼𝐼−𝑠𝑠𝐼𝐼
𝑠𝑠𝐼𝐼𝐼𝐼−𝑠𝑠𝐼𝐼

            (30) 

𝐶𝐶2 = 𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼𝐼𝐼−𝑠𝑠𝐼𝐼𝑠𝑠𝐼𝐼
𝑠𝑠𝐼𝐼𝐼𝐼−𝑠𝑠𝐼𝐼

   (31) 

• The 𝜎𝜎𝑦𝑦,𝐼𝐼 and 𝜎𝜎𝑦𝑦,𝐼𝐼𝐼𝐼 value are calculated 
(Eq. 32-33). 

𝜎𝜎𝑦𝑦,𝐼𝐼 = ∆𝜎𝜎𝐼𝐼
2 − 𝐶𝐶1

𝛾𝛾1
𝑡𝑡𝑎𝑎𝑡𝑡ℎ (𝛾𝛾1∆𝜀𝜀𝐼𝐼

𝑝𝑝

2 ) − 𝐶𝐶2+𝐶𝐶3
2 ∆𝜀𝜀𝐼𝐼

𝑝𝑝   (32) 

𝜎𝜎𝑦𝑦,𝐼𝐼𝐼𝐼 = ∆𝜎𝜎𝐼𝐼𝐼𝐼
2 − 𝐶𝐶1

𝛾𝛾1
𝑡𝑡𝑎𝑎𝑡𝑡ℎ (𝛾𝛾1∆𝜀𝜀𝐼𝐼𝐼𝐼

𝑝𝑝

2 ) − 𝐶𝐶2+𝐶𝐶3
2 ∆𝜀𝜀𝐼𝐼𝐼𝐼

𝑝𝑝   (33) 

• The 𝜎𝜎𝑦𝑦 value is determined using Eq. 34. 

𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑦𝑦,𝐼𝐼+𝜎𝜎𝑦𝑦,𝐼𝐼𝐼𝐼
2    (34) 

• The error function 𝛹𝛹 is computed (Eq. 
35). 

𝛹𝛹(𝛾𝛾1) = (1 − 𝛼𝛼)𝛴𝛴2 + 𝛼𝛼(𝛬𝛬𝐼𝐼
2 + 𝛬𝛬𝐼𝐼𝐼𝐼

2 )     (35) 

where: 𝛼𝛼 is a user parameter (𝛼𝛼 = 0.8 here), 𝛴𝛴 is 
the error function (Eq. 36), 𝛬𝛬𝐼𝐼 and 𝛬𝛬𝐼𝐼𝐼𝐼 is the error 

on the prediction of the hysteresis area of the first 
and the second cycles, respectively (Eq. 37-38). 

𝛴𝛴 = |𝜎𝜎𝑦𝑦,𝐼𝐼𝐼𝐼−𝜎𝜎𝑦𝑦,𝐼𝐼
𝜎𝜎𝑦𝑦

|      (36) 

𝛬𝛬𝐼𝐼 =
2𝜎𝜎𝑦𝑦∆𝜀𝜀𝐼𝐼

𝑝𝑝+2(𝐶𝐶1
𝛾𝛾1

∆𝜀𝜀𝑝𝑝−2𝐶𝐶1
𝛾𝛾12

𝑠𝑠𝑠𝑠𝑡𝑡ℎ(𝛾𝛾1∆𝜀𝜀𝑝𝑝
2 ))

𝐴𝐴𝐼𝐼
− 1    (37) 

𝛬𝛬𝐼𝐼𝐼𝐼 =
2𝜎𝜎𝑦𝑦∆𝜀𝜀𝐼𝐼𝐼𝐼

𝑝𝑝 +2(𝐶𝐶1
𝛾𝛾1

∆𝜀𝜀𝑝𝑝−2𝐶𝐶1
𝛾𝛾12

𝑠𝑠𝑠𝑠𝑡𝑡ℎ(𝛾𝛾1∆𝜀𝜀𝑝𝑝
2 ))

𝐴𝐴𝐼𝐼𝐼𝐼
− 1    (38) 

where: 𝐴𝐴𝐼𝐼 and 𝐴𝐴𝐼𝐼𝐼𝐼 are areas of the hysteresis loop 
of 𝐼𝐼 and 𝐼𝐼𝐼𝐼 stabilized cycles (Eq. 39). 

𝐴𝐴𝐼𝐼 = 𝐴𝐴𝐼𝐼𝐼𝐼 = 2𝜎𝜎𝑦𝑦∆𝜀𝜀𝑝𝑝 + 2 (𝐶𝐶1
𝛾𝛾1

∆𝜀𝜀𝑝𝑝 −

 2 𝐶𝐶1
𝛾𝛾1

2 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (𝛾𝛾1∆𝜀𝜀𝑝𝑝

2 )) = ∮ 𝜎𝜎𝜎𝜎𝜀𝜀𝑝𝑝   (39) 

6) The 𝛾𝛾1 parameter is selected for which the er-
ror function 𝛹𝛹 is the minimum and the other 
parameters are updated. 

7) The 𝛾𝛾2 is assumed to be in the range of 
1÷2000 to metal alloys in line with the proce-
dure proposed by Santus et al. [40]. 

8) The 𝑄𝑄 and 𝑏𝑏 isotropic hardening parameters 
are determined using Eq. 40-42. 

𝑄𝑄 = 𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑦𝑦,0   (40) 

𝜎𝜎𝑦𝑦,0 − 𝜎𝜎𝑦𝑦 = −𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(−𝑏𝑏𝑄𝑄)  (41) 

𝑄𝑄 = ∫|𝜎𝜎𝜀𝜀𝑝𝑝|             (42) 

Using the steps presented above, the algo-
rithm is also written in a commercial program and 
then used. 

 
Experimental research 

The symmetrical total strain-control cyclic 
tension-compression tests with different ∆𝜀𝜀 strain 
range were carried out in order to determine the 
hardening parameters for CIKH model. The re-
search was carried out on a hydraulic universal 
testing machine (Z100 ZWICK ROELL, Ger-
many) at ambient temperature (Fig. 4). The cyclic 
tension-compression tests were carried out for a 
construction steel S235JR which is commonly 
used in a construction sector. The chemical com-
position of steel applied is contained in Table 1. 
The selected mechanical properties, e.g. the 
Young modulus and the initial yield stress were 
determined using the first half-loaded part of the 
hysteresis loop.  

During the experiment, the symmetrical de-
formation 𝜀𝜀 = ±1% and 𝜀𝜀 = ±1.5%, as well as, 
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a) 

 
 
b) 

 

Figure 4. The universal testing machine used in the 
research (a) and the sample during the test (b) 
 

Table 1. Chemical composition of S235JR steel used 
in the research 

Compound C Mn P S Cu N 

Percentage [%] 0.17 1.40 0.035 0.035 0.55 0.012 

 

non-symmetrical deformation 𝜀𝜀 = −0.5 ÷ 1% of 
the 15 mm measuring base is used. The hourglass 
samples were prepared from 12 mm diameter 
rolled bars (Fig. 5). The elongation of the speci-
men was measured during the cyclic loading tests 
using the extensometer (ZWICK ROELL, Ger-
many). The obtained force-elongation curve is 
transferred then into stress-strain one. 

 

 
Figure 5. The sample used in the cyclic loading test 

RESULTS AND DISCUSSION 

Identification of hardening parameters 

Firstly, some mechanical properties – the ini-
tial yield stress (𝜎𝜎𝑦𝑦0) and the Young modulus (𝐸𝐸), 
necessary for the identification procedure, are de-
termined. These values are read from the half 
loaded part of the first hysteresis loop (Fig. 6). 
The following mechanical parameters are read: 
the initial yield stress 𝜎𝜎𝑦𝑦0 = 235 MPa and Young 
modulus 𝐸𝐸 = 193 GPa. 

 
Figure 6. The half loaded part of the first hysteresis 
loop (𝜀𝜀 = ±1%) 
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The strain-controlled cyclic loading tests 
were carried out until the stabilization of the 
curve was achieved. Therefore, the sample was 
subjected to 6 load cycles. It was noted that the 
material indicates both isotropic and kinematic 
hardening associated with the increase and the 
translation of a yield surface, respectively.  

The experimental stress-strain curves ob-
tained for S235JR construction steel during the 
cyclic tension-compression tests under strain-
control conditions for different strains tested is 
shown in Figure 7. The hysteresis curve for 𝜀𝜀 =
±1% is used further in order to determine the  
a) 

 
b) 

 
c) 

 
Figure 7. The stress-strain curves showing hysteresis 
loops obtained in strain-controlled cyclic loading tests 
for 𝜀𝜀 = ±1% (a), 𝜀𝜀 = ±1.5% (b) and for non-symmet-
rical test (𝜀𝜀 = −0.5 ÷ 1%) (c) 

hardening parameters and then, the parameters 
were applied in order to model curves for other 
strains. The last stabilized cycle selected from the 
hysteresis curve which is used for the parameter 
identification is presented in Figure 8. 

The procedures for the determination of both 
isotropic and kinematic hardening parameters is 
carried out according to the previous section of 
the paper. Firstly, the method based on the last 
stabilized cycle of the hysteresis curve is tested. 
The CIKH hardening parameters obtained are 
contained in Table 2. Three non-linear kinematic 
components are selected here. In order to check  
a) 

 
b) 

 
c) 

 
Figure 8. The last stabilized cycle for the strain-con-
trolled cyclic loading test; 𝜀𝜀 = ±1% (a), 𝜀𝜀 = ±1.5% 
(b) and for non-symmetrical test (𝜀𝜀 = −0.5 ÷ 1%) (c) 
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effects of the procedure applied, the numerically-
generated stress-strain curve on the basis of the 
determined hardening parameters, is compared to 
the experimental data (Fig. 9). The good conver-
gence between both curves is noted at this stage 
without any optimization procedure. It is quite ev-
ident that the last regions of the curve are modeled 
the best which is associated with the identification 
procedure applied. In the stabilized cycle method, 
the hardening parameters are selected using only 
the last stabilized cycle. The inaccurate is ob-
served in corners of the hysteresis curve. 
a) 

 
b) 

 
Figure 9. The comparison of experimental and numer-
ical curves for the last stabilized cycle procedure (a) 
and the fitting to the last stabilized cycle (b) 
 

The hardening parameters determined for 𝜀𝜀 =
±1% were then applied in the simulation of hyste-
resis curves for other tested strains (symmetrical 
𝜀𝜀 = ±1.5% and non-symmetrical 𝜀𝜀 = −0.5 ÷
1%) in order to check if hardening parameters 
determined in ∆𝜀𝜀 = ±1% provide a reasonable ap-

proximation for another cases. The results obtained 
are shown in Figure 10 and Figure 11. The confir-
mation of good agreement between numerically-
generated and experimental curves for all cases in-
dicates the possibility of the reduction of the num-
ber of the experimental research which is im-
portant from the economic point of view. 
a) 

 
b) 

 
Figure 10. The comparison of experimental and nu-
merical curves for the last stabilized cycle procedure 
for 𝜀𝜀 = ±1.5% (a) and for 𝜀𝜀 = −0.5 ÷ 1% (b) 
 

After that, the procedure proposed by Santus 
et al. [40] was tested in this paper. The method 
was applied for the hysteresis curve obtained for 
𝜀𝜀 = ±1%. The hardening parameters used in this 
algorithm is contained in Table 3. The Figure 12 
shows the similarities and differences between 
experimental and numerical hysteresis loops. It is 
shown that the better results are obtained using 
the last stabilized method. Especially, the differ-
ences between two tested procedures are visible  

Table 2. Hardening parameters of the CIKH model using the last stabilized cycle procedure 

Hardening 
parameter 

Isotropic hardening Kinematic hardening 

Q [MPa] b [-] C1 [MPa] γ1 [-] C2 [MPa] γ2 [-] C3 [MPa] γ3 [-] 

Value 132.0 3.0 2021.0 279.0 4157.0 87.7 4191.0 11.4 
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a) 

 
b) 

 
Figure 11. The comparison of experimental and nu-
merical curves for the last stabilized cycle procedure 
for 𝜀𝜀 = ±1.5% (a) and for 𝜀𝜀 = −0.5 ÷ 1% (b) (the 
last stabilized cycle only) 
 

for stabilized cycles. The parameters for the first 
tested procedure are then used in the optimization 
procedure. 

Using the authorial algorithm based on the 
last stabilized cycle method, the additional infor-
mation about the change of total backstress, as 
well as, the isotropic hardening in time is obtained 
(Fig. 13). The non-linear isotropic and kinematic 
hardening, as well as the saturation of the iso-
tropic one, is noted. 
 

Optimization procedure 

In order to improve the agreement between ex-
perimental and numerically-generated hysteresis 
curves, the optimization procedure is applied in 
this research. Recently, different optimization  

a) 

 
b) 

 
Figure 12. The comparison between experimental and 
numerically-generated curves for the procedure pro-
posed by Santus et al. [40] for 𝜀𝜀 = ±1% (a) and the 
fitting to the last stabilized cycle (b) 
 

methods has been tested [53-56]. The optimization 
technique using the least-square approach is pro-
posed here. The procedure was written in a com-
mercial program and tested previously by authors 
[20]. Due to its effectiveness of the improvement 
of the convergence between numerical and exper-
imental data, the method is also applied in this pa-
per. The idea of the least-square optimization 
method is the minimizing the error of estimation 
between experimental and numerical data. The 
technique is described in more detail in [57-59]. 
The error ‖𝑍𝑍‖ is computed as follows (Eq. 43): 

‖𝑍𝑍‖ = √∫ (𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜎𝜎𝑛𝑛𝑢𝑢𝑚𝑚)2𝑑𝑑𝜀𝜀
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
0       (43) 

where: 𝜀𝜀𝑚𝑚𝑚𝑚𝑒𝑒  is the experimentally obtained max-
imum value of the strain, 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 – stress registered  

Table 3. Hardening parameters of the CIKH model for S235JR steel using the procedure proposed by Santus et al. [40] 

Hardening 
parameter 

Isotropic hardening Kinematic hardening 

Q [MPa] b [-] C1 [MPa] γ1 [-] C2 [MPa] γ2 [-] C3 [MPa] γ3 [-] 

Value 132.0 3.0 2189 300.0 4500.3 100.0 4150.0 0.0 
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a) 

 
b) 

 
Figure 13. The change of backstresses (a) and iso-
tropic hardening (b) 
 

during the experiment, 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛 – stress obtained in 
numerical calculations. The 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛 value is esti-
mated using the hardening parameters. 

In such authorial algorithm, the hardening pa-
rameters initially determined are randomly scat-
tered up to 10% and for each set of them, the 
𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛 and the ‖𝑍𝑍‖ are calculated. The hardening 
parameters determined using the least-square 
method for which the error is the smallest, are 
contained in Table 4. The exemplary results for 
hysteresis curve for 𝜀𝜀 = ±1% is shown in Figure 
14. The slightly improvement between such nu-
merically-generated and experimental curves is 
observed what shows that the initial selection of 
hardening parameters was done correctly. The er-
ror norm decreases form ‖𝑍𝑍‖= 33 MPa to ‖𝑍𝑍‖= 
10 MPa. However, the improvement of the fitting 
in corners of hysteresis loops is not noted.  

 

The application of a fuzzy logic approach 

As mentioned before, the selection of CIKH 
model hardening parameters is often subjected to 
some errors associated both with the experiment 
prediction, as well as, the identification proce-
dure. In order to improve the convergence be-
tween experiment and numerical results, different  

 
Figure 14. The comparison of experimental and nu-
merical curves after the use of the least-square method 
 

optimization techniques are tested. However, as it 
proved in authors previous paper, the similar error 
can be obtained for many different sets of param-
eters. Additionally, the some uncertainty of ex-
perimental data and the material model applied 
should be included. 

In order to determine the most reliable solu-
tion without many experiments, the method based 
on the fuzzy logic is applied by authors. The fuzzy 
logic is, as a genetic algorithm, a soft-computing 
method which assumes some uncertainty of input 
and output data, as well as, the uncertainty of a 
mapping model. More details about fuzzy logic is 
contained in [60-63].  

The authorial procedure based on fuzzy set 
theory was written and tested previously by the 
authors [20, 21]. Due to its effectiveness for the 
determination of the most reliable values of hard-
ening parameters, it is also contained here. The 
fuzzy input variables were initially determined 
hardening parameters and the fuzzy output one 
was the ‖𝑍𝑍‖ error. The set of constitutive equa-
tions of CIKH model is used as a mapping model. 
The procedure for the identification of hardening 
parameters on the basis of the fuzzy logic is sum-
marized in line with the following steps: 
1) The parameters related to isotropic and kine-

matic hardening, which are fuzzy input vari-
ables, are fuzzified and membership func-
tions are constructed for them. Different 
shapes of membership functions were tested 
but the results for triangular membership 
functions are presented here. 

Table 4. Hardening parameters of the CIKH model for S235JR steel after the use of the least-square method 

Hardening 
parameter 

Isotropic hardening Kinematic hardening 
‖Z‖  [MPa] 

Q [MPa] b [-] C1 [MPa] γ1 [-] C2 [MPa] γ2 [-] C3 [MPa] γ3 [-] 

Value 124.3 2.7 1994.7 210.6 3632.9 83.3 3244.2 6.6 10 
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CONCLUSIONS

The modelling of the material behaviour under 
loading requires the right selection of the material 
model, as well as, the right identification of hard-
ening parameters. However, for models with a sev-
eral parameters, e.g. the Chaboche-Lemaitre com-
bined isotropic-kinematic hardening model with 
some backstresses, the identification of the harden-
ing parameters is a complex and time-consuming 
process. The procedure of the selection the isotro-
pic and kinematic hardening parameters for the 
Chaboche-Lemaitre combined isotropic-kinematic 

2) The membership functions obtained are di-
vided into several number of 𝛼𝛼-levels for the 
𝛼𝛼-level method applied here.  

3) The boundary 𝐶𝐶𝑖𝑖, 𝛾𝛾𝑖𝑖, 𝑏𝑏 and 𝑄𝑄 values are se-
lected for a certain 𝛼𝛼-level of all membership 
functions. 

4) Minimum and maximum values of ‖𝑍𝑍‖ error 
are computed for all input parameters using 
Eq. 44. These values determine shapes of the 
output membership functions.  

{‖𝑍𝑍‖ = 𝑓𝑓(𝑄𝑄, 𝑏𝑏, 𝐶𝐶𝑖𝑖, 𝛾𝛾𝑖𝑖) ⇒ min (𝑄𝑄, 𝑏𝑏, 𝐶𝐶𝑖𝑖, 𝛾𝛾𝑖𝑖) ∈ 𝑋𝑋𝛼𝛼𝛼𝛼
‖𝑍𝑍‖ = 𝑓𝑓(𝑄𝑄, 𝑏𝑏, 𝐶𝐶𝑖𝑖, 𝛾𝛾𝑖𝑖) ⇒ max (𝑄𝑄, 𝑏𝑏, 𝐶𝐶𝑖𝑖, 𝛾𝛾𝑖𝑖) ∈ 𝑋𝑋𝛼𝛼𝛼𝛼

 

(44) 

where: requirements (𝑄𝑄, 𝑏𝑏, 𝐶𝐶𝑖𝑖, 𝛾𝛾𝑖𝑖) ∈ 𝑋𝑋𝛼𝛼𝛼𝛼 de-
scribes constraints for the optimization method. 

5) The discrete 𝑍𝑍0 value is calculated in the de-
fuzzification step using the mass center (Eq. 
45), the centroid (Eq. 46) and the level rank 
(Eq. 47) methods in order to check the influ-
ence of the defuzzification method on final 
results. Such obtained 𝑍𝑍0 value is the most re-
liable solution. 

𝑍𝑍0 = ∫ 𝑍𝑍∙𝜇𝜇(𝑍𝑍)𝑑𝑑𝑍𝑍
∫ 𝜇𝜇(𝑍𝑍)𝑑𝑑𝑍𝑍    (45) 

𝑍𝑍0 = ∫ 𝑍𝑍 ∙ 𝜇𝜇(𝑍𝑍)𝑑𝑑𝑍𝑍 ∙ [∫ 𝜇𝜇(𝑍𝑍)𝑑𝑑𝑍𝑍𝑍𝑍 ]
−1

𝑍𝑍    (46) 

𝑍𝑍0 = 1
𝑟𝑟 ∙ ∑

𝑍𝑍𝛼𝛼𝑘𝑘𝑙𝑙+𝑍𝑍𝛼𝛼𝑘𝑘𝑟𝑟
2

𝑟𝑟
𝛼𝛼=1         (47) 

where: 𝑟𝑟 is a number of 𝛼𝛼-levels assumed, 𝑍𝑍𝛼𝛼𝑘𝑘𝑙𝑙
 

and 𝑍𝑍𝛼𝛼𝑘𝑘𝑟𝑟
are boundaries of 𝛼𝛼-levels considered. 

6) The most reliable solution is a set of harden-
ing parameters with the minimal error 𝑍𝑍0. 

The hardening parameters obtained using the 
fuzzy logic algorithm are listed in Table 5. For 
such parameters obtained, the numerical hysteresis 
stress-strain curve is generated which is then com-
pared with the experimental one. The exemplary 
results for hysteresis curve for 𝜀𝜀 = ±1% is shown 

in Figure 15. Due to the fact that similar hardening 
parameters are obtained and the hysteresis curves 
are very similar (differences are not visible), the re-
sults for the mass center method are only shown. A 
good agreement between the curves is noted. Alt-
hough, the fuzzy logic procedure does not improve 
the fitting of experimental and numerical hystere-
sis loops significantly, the algorithm includes the 
impact of the constitutive equations of theory of 
plasticity on the results. In comparison, it is not 
contained in a pure statistical approach. 

 
Figure 15. The comparison between experimental and 
numerical curves after the use of the fuzzy set theory 
algorithm (the mass center deffuzification method) 

 

 

Table 5. Hardening parameters for S235JR steel after the use of a fuzzy logic algorithm and different deffuzifica-
tion methods 

Hardening 
parameter 

Isotropic hardening Kinematic hardening 
‖Z‖ [MPa] 

Q [MPa] b [-] C1 [MPa] γ1 [-] C2 [MPa] γ2 [-] C3 [MPa] γ3 [-] 

The mass center method 

Value 125.3 2.9 2005.7 200.6 3442.5 80.2 3124.5 6.7 8.7 

The centroid method 

Value 121.7 2.6 1924.5 191.5 3329.5 79.5 2998.1 5.9 9.1 

The level rank method 

Value 126.0 3.0 2134.6 210.5 3423.6 89.3 3055.5 6.2 9.0 
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hardening model (CIKH) based on the experimen-
tal data obtained in a strain-controlled cyclic load-
ing test for S235JR construction steel is applied in 
this paper. This material was analyzed here due to 
the fact that it is subject to cyclic loading during its 
application in a construction sector. 

The selection of hardening parameters is 
done using the last stabilized cycle of a hysteresis 
curve obtained in a cyclic loading test. The good 
convergence between experimental data and nu-
merical calculations is obtained. For the improve-
ment of the convergence between experiment and 
numerical calculations, the least-square optimi-
zation procedure was tested. For the selection of 
the most reliable solution, an authorial procedure 
written on the basis of the fuzzy logic was also 
applied. Based on the results obtained in this pa-
per, the main conclusions are as follows:
1. The identification procedure for the CIKH mod-

el gives a set of isotropic and kinematic parame-
ters with a good agreement with the experimen-
tal data. However, slightly better fitting between 
experimental and numerical data is achieved for 
the last stabilized cycle procedure.

2. The hardening parameters determined under 
the symmetrical stain-controlled cyclic load-
ing test for =1% can be applied for modelling 
of hysteresis curves for other strains with good 
results. Therefore, the number of experimental 
research can be reduced to the minimum. 

3. The optimization algorithm can improve the con-
vergence between the experiment and numerical 
simulations by minimizing the error norm.

4. The advantage of the authorial algorithm is 
the possibility to achieve additional informa-
tion about the hardening, e.g. the change of the 
backstress in time. 

5. The selection of hardening parameters is sub-
ject to some error associated with both experi-
ment and the identification procedure. In order 
to include some uncertainty of input data and 
model applied, as well as including the map-
ping model, the authorial algorithm based on 
the fuzzy logic is tested. 

6. The results obtained using the fuzzy logic proce-
dure are similar to the results of pure statistics. 
However, the approach based on the fuzzy theory 
does not require a lot of experimental data. It is 
the additional advantage of the method proposed. 

7. The correct determination of hardening pa-
rameters is essential for modelling phenomena 
occurring in the material during different pro-
cesses, including metal forming processes.

In further research, the application of other 
soft-computing method, e.g. genetic algorithm 
will be tested in order to select the right values 
of hardening parameters. The other models will 
be also tested in modelling of the cyclic stress-
strain hysteresis curves, e.g. Ohno-Wang model 
or modified Chaboche ones.
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